английский математик. С 1649 г. – профессор геометрии Оксфордского университета. Один из основателей (1662) Лондонского королевского общества. Получил значительные результаты в зарождавшемся тогда математическом анализе, геометрии, тригонометрии, теории чисел.
В 1655 году Валлис издал большой трактат «Арифметика бесконечного» (лат. Arithmetica Infinitorum sive Nova Methodus Inquirendi in Curvilineorum Quadraturam, aliaque Difficiliora Matheseos Problemata), где ввёл придуманный им символ бесконечности. В книге он сформулировал строгое определение предела переменной величины, продолжил многие идеи Декарта, впервые ввёл отрицательные абсциссы, вычислилсуммы бесконечных рядов — по существу интегральные суммы, хотя понятия интеграла тогда ещё не было. Там же была приведена знаменитая формула Валлиса для числа "пи".
В «Трактате о конических сечениях», приложении к «Арифметике бесконечного», Валлис развил «метод неделимых» Кавальери, перенеся его с геометрической базы на алгебраическую с помощью понятия бесконечно малого. Здесь он также, в современной терминологии, вычислил ряд определённых интегралов для степенной функции и близких к ней функций. Начиная с Валлиса, конические сечения рассматриваются как плоские кривые; при этом Валлис использовал не только декартовы, но и косоугольные координаты.
В математике Валлис всегда уделял особое внимание практически-вычислительным аспектам, зачастую пренебрегая строгими доказательствами. Свои университетские лекции по алгебре он опубликовал в виде монографии «Всеобщая математика, или полный курс арифметики» (1657). В ней он творчески переработал достижения алгебры от Виета до Декарта. В 1685 году он опубликовал значительно дополненный «Трактат по алгебре», который историки расценивают как алгебраическую энциклопедию своего времени. Трактат содержал, среди прочего, обстоятельную теорию логарифмов, разложение бинома, приближённые вычисления, а также геометрическую интерпретацию комплексных чисел, оставшуюся незамеченной современниками. Первый дал современное определение логарифмирования как операции, обратной возведению в степень; Непер, изобретатель логарифмов, определил их кинематически, затушевав их истинную природу. Валлис ввёл термины: мантисса, интерпретация, непрерывная дробь, интерполяция, вывел рекуррентные соотношения для подходящих дробей непрерывной дроби.
Труды Валлиса произвели большое впечатление на молодого Ньютона. Именно в письмах к Валлису Ньютон впервые открыто сформулировал принципы своей версии дифференциального исчисления (1692), и с разрешения автора Валлис опубликовал эти письма в переиздании своего «Трактата по алгебре» (1693).
В 1693 году Валлис в своей работе воспроизвёл перевод сочинения Насир ад-Дина ат-Туси о пятом постулате и предложил эквивалентную, но более очевидную формулировку этой аксиомы: существуют подобные, но не равные фигуры.
Из прочих работ Валлиса замечательны исследования по определению длины дуги некоторых кривых. Он сумел, на пари с Паскалем, найти длину дуги для арки циклоиды, её площадь и положение центра масс сегмента циклоиды. Одновременно с Гюйгенсом и Реном он решил вопрос об упругом соударении шаров, опираясь на закон сохранения количества движения. Валлис, кроме того, писал трактаты о логике, об английской грамматике, о способе обучения глухонемых разговору и множество сочинений богословского и философского содержания.